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Abstract

While text-3D editing has made significant strides
in leveraging score distillation sampling, emerging ap-
proaches still fall short in delivering separable, precise and
consistent outcomes that are vital to content creation. In
response, we introduce FocalDreamer, a framework that
merges base shape with editable parts according to text
prompts for fine-grained editing within desired regions.
Specifically, equipped with geometry union and dual-path
rendering, FocalDreamer assembles independent 3D parts
into a complete object, tailored for convenient instance
reuse and part-wise control. We propose geometric focal
loss and style consistency regularization, which encourage
focal fusion and congruent overall appearance. Further-
more, FocalDreamer generates high-fidelity geometry and
PBR textures which are compatible with widely-used graph-
ics engines. Extensive experiments have highlighted the su-
perior editing capabilities of FocalDreamer in both quanti-
tative and qualitative evaluations.

1. Introduction

Art reflects the figments of human imagination and cre-
ativity. Recently, the rapid development of neural gener-
ative model [6, 11] has significantly lowered the barriers
for humans to engage in artistic creation with just a few
words. However, these black-box models also deprive hu-
mans of a significant portion of control, which means the
generated results aren’t often aligned with expectations. In
this work, we take a step towards precise editing for 3D cre-
ation, enabling neural networks to naturally expand user’s
intentions, rather than controlling the entire generative pro-
cess.

In the realms of animation, gaming, and the recent ad-
vance of virtual augmented reality, 3D models and scenes
are commonly constructed as an assembly of semantically
distinct base parts, which support the practice of rendering
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Figure 1. Given the prompt “a butterfly over a tree stump”, our
method delivers high-fidelity geometry and photorealistic appear-
ance using PBR materials. Lines (b-c) showcase instance reuse
and part-wise material control, underscoring FocalDreamer’s ca-
pability for separable and precise edits.

multiple copies of the same part across scenes with different
transform matrices, called geometry instancing or instance
reuse (Fig. 1). We believe that an ideal 3D editing workflow
should possess the following good properties:

• Separable. Given a base shape, it should produce
structurally separate parts [16] facilitating for in-
stance reuse and part-wise post-processing, grounded
in widespread understanding.

https://focaldreamer.github.io


“a butterfly over a tree stump” “Flash Gordon wear the red velvet cape with a 

golden trim over his shoulder, highly detailed”

“a deer standing 

on two separate wooden skateboards”

“a red rose with four green leaves” “a highly detailed pegasus with two wings” “a blue headset with a microphone”

“a Chinese white ceramic vase with 

slender neck on a wooden stool” “the anime character Naruto with a backpack”

“a baby turtle lies on the back of a big turtle” “a human skull wearing a pair of dark glasses”

“a lounge chair with four rollers”

“a cat with an orange larger tail like fox”

Figure 2. FocalDreamer can generate meticulously detailed and photo-realistic 3D editing. The left column displays base meshes with
focal regions. The three right columns showcase edited overall appearance, assembled geometry, and editable part.

• Precise. It should provide fine-grained and local edit-
ing, enabling precise control in the desired area [39],
while maintaining other regions untouched.

• Consistent. After the editing process, the resultant
shape should respect the characteristics of the source
shape in harmonious appearance [32], while visually
adhering to the text specifications.

Emerging approaches in text-3D editing have achieved
noteworthy development, yet they often fall short in deliv-
ering separable, precise, and consistent outcomes that are
vital to content creation. Some approaches [10, 18] strug-
gle to pinpoint the focused local regions, leading to unde-
sired alterations to the base shape. Others [29, 39] over-
look the stylistic consistency of the 3D edited portions. Fur-
thermore, nearly all past methods directly modify the base
shape, neglecting the need for instance reuse and part-wise
control (i.e., enabling fine-grained edits to individual parts
of a complete object). Moreover, their coupling of geometry
and textures has compromised the quality of the edits.

We introduce the following key contributions to meet our
outlined criteria: (1) Separable: we propose FocalDreamer,
a user-friendly framework that permits intuitive object mod-
ifications using text prompts and a rough focal region for
the intended edits. Instead of direct modifications to the
base shape (e.g., the horse in Fig. 3), a novel editable part
(wings in Fig. 3) is generated in the focal region, facilitating

instance reuse and precise control. Equipped with geometry
union and dual-path rendering, this part is merged with base
mesh into a semantically unified shape in a lossless and dif-
ferentiable manner, then optimized using a powerful text-to-
image model to align the prompts and shapes. Furthermore,
our decoupled learning of geometry and appearance yields
detailed geometry and PBR textures, ensuring compatibil-
ity with prominent graphics engines. (2) Precise: Users
delineate one or several ellipsoid focal regions, in which a
spherical editable part initializes, acting as a smooth prior
for the geometry network. The geometric focal loss is also
introduced, discouraging edits beyond specified regions. (3)
Consistent: a smooth, coherent surface is essential in cer-
tain scenes. Hence, a soft geometry union operator and
a style consistency regularization are proposed to ensure
a seamless geometric transition and stylistically consistent
texture between the learnable part and base shape.

To our knowledge, this is the first component-based edit-
ing method with separate learnable parts. Rich experiments
and detailed ablation studies highlight the superior editing
capabilities of our approach, as shown in Fig. 2.

2. Related work

Text-guided Image Generation and Editing. Significant
progress in Text-to-Image (T2I) generation with diffusion
models [11] is witnessed in recent years. More recently,



Figure 3. An overview of FocalDreamer. (a) During geometry learning, given a base shape, we first initialize an ellipsoid as editable
geometry within each focal region. Then we render the normal map of merged shape as shape encoding of pre-trained T2I models, to
optimize the editable geometry according to prompts. (b) During appearance learning, resultant shape is rendered in a dual-path manner
with base and editable textures. The outcomes are then blended by Pixel-wise Discriminative Mask for a unified appearance. (c) Several
regularizations are introduced to improve the editing quality, including LGF , LCA, and LSC .

with the availability of scalable generator architectures and
extremely large-scale image-text paired datasets, they’ve
demonstrated impressive performance in high-fidelity and
flexible image synthesis [28]. Due to their comprehension
of complex concepts, diffusion models are also amicable
for various editing tasks, such as image inpainting [19], im-
age blending [1], image stylization [38]. The most relevant
field to us among those is inpainting, which provides flexi-
ble control of the inpainted content, and a mask to constrain
the shape of the inpainted object. SmartBrush [32] intro-
duces a precision factor into the masks for multiple-grained
controls on inpainting regions.
Text-to-3D Content Generation.Driven by the aspiration
to produce high-fidelity 3D content using semantic inputs
like text prompts, the field of text-to-3D has garnered a sig-
nificant boost in recent years [25]. Earlier approaches ei-
ther align shapes and images in the latent space by CLIP
supervision [27] to generate 3D geometries [22] or synthe-
size new perspectives [13], or they train text-conditioned
3D generative models from the ground up [17]. DreamFu-
sion [25] first employs large-scale T2I models with a com-
bination of score distillation sampling to distill the prior,
and achieves impressive results. Magic3D [18] further im-
proved the quality and performance of generated 3D shapes
with a 2-step pipeline. Fantasia3D [3] and TextMesh [30]
modify the representation of geometry to extract detailed
mesh and photorealistic rendering. However, all these
methods present semantic misalignment between the lo-
cal content and global text description when editing, lean-
ing towards distorted background and inconsistent results.
Therefore, we proposed a dual-branch framework with fine-
grained editing on ideal regions.
3D Content Editing.Semantic-driven 3D scene editing is
a mulch harder task compared with 2D photo editing be-

cause of the high demand for multi-view consistency, the
scarcity of paired 3D data and its entangled geometry and
appearance. Previous approaches either rely on labori-
ous annotation [14, 33–35], only support object deforma-
tion or translation [9, 15, 31], or only perform global style
transfer [4, 5, 7, 12, 36] without strong semantic meaning.
Recently, thanks to the development of score distillation
sampling technique, text-guided editing has emerged as a
promising direction with great potential. SKED [21] pos-
sesses the capability to edit 3D scenes by utilizing precise
multi-view sketches. Latent-NeRF [20] and Fantasia3D [3]
realize sketch-shape guidance by relaxed geometric con-
straints on the sketches’ surface. Instruct-NeRF2NeRF [10]
can edit an existing NeRF scene by iterative dataset update.
However, it manipulates the entire space, and the preser-
vation of undesired regions is absent. Vox-E [29] allows
local edits on an existing NeRF, but it suffers from sub-
par editing quality and noticeable noise as shown in Sec-
tion 4, because of coupling geometry and textures. Most
related to our work, DreamEditor [39] locally edits a mesh-
based neural field. However, it doesn’t achieve separable
editing which is vital for instance reuse and part-wise con-
trol. Moreover, DreamEditor cannot change the number of
vertices, supporting only minor shape insertion and replace-
ment of objects of the same type (e.g., replacing a horse with
a deer). In contrast, our work not only brings about highly
reasonable and noticeable geometric changes but also gen-
erates realistic appearances.

3. Method

As illustrated in Fig. 3, a complete object is conceptu-
alized as a composition of base shape and learnable parts,
wherein both of them possess their own geometry and



texture, tailored for convenient instance reuse and part-
wise control. Furthermore, a two-stage training strategy is
adopted to sequentially learn the geometry and texture of
the editable shape, to avoid the potential interference that
can occur when geometry and texture learning are inter-
twined. For instance, in the case of zebra modeling, geo-
metric protrusions might be learned instead of the desired
black stripes. Such a disentangled learning approach not
only stabilizes the training process but also yields high-
fidelity geometry and textures, especially when compared
to mainstream text-to-3D techniques [25, 29]. The details
of above two stages are explained in the following sections.

3.1. Preliminary

Score Distillation Sampling. Score distillation sampling
(SDS) is a way to distill the priors hidden in large T2I
models for 3D generation proposed by DreamFusion [25].
DreamFusion represents 3D scenes as a series of learnable
parameters θ. Utilizing a differentiable renderer, it converts
the 3D scenes into 2D image sets x. Subsequently, it em-
ploys large-scale models ϕ to optimize the parameters of the
3D scenes with a score function. The SDS loss is calculated
as the per-pixel gradient as follows:

∇θLSDS(ϕ, x) = Et,ϵ

[
w(t)(ϵ̂ϕ(zt; y, t)− ϵ)

∂x

∂θ

]
, (1)

where w(t) controls the weight of SDS guidance depending
on noise level t. ϵ̂ϕ(zt; y, t) and ϵ are the predicted noise
and actual noise, respectively. y is the condition.
DMTet. DMTet [23] is a hybrid representation that has two
components, i.e., a deformable tetrahedral grid and a dif-
ferentiable Marching Tetrahedral (MT) layer. The Signed
Distance Function (SDF) values and the position offsets of
deformable tetrahedral vertices are learnable, followed by
the MT layer to extract meshes. It is capable of generat-
ing high-resolution 3D shapes due to its high memory effi-
ciency.

3.2. Geometry Editing

Focal Region. The starting point of our algorithm is
a base shape (Ψb for geometry and Γb for texture) to
be edited, which can be the reconstruction from images,
crafted shapes by artists [23], and even the novel shapes
from the generative method [3]. Then the base model is
modified by compositing with a new learnable part accord-
ing to prompts. To offer more precise control over the gen-
eration process, users are requested to select one or multi-
ple ellipsoid areas (depending on the editing needs) as fo-
cal/target regions. Each focal region Ω′ is deformed from
a standard sphere Ω by an affine transformation with 9 de-
grees of freedom (DOF), 3 DOF for stretching, 3 DOF for
rotation, and 3 DOF for translation along the {X, Y, Z}-axis:

Ω′ = Rxyz(α, β, γ) · T (tx, ty, tz) · S(sx, sy, sz) · Ω. (2)

The selection of the focal region doesn’t require exact pre-
cision for it merely serves as a rough expression of the re-
gional prior from user intent. Our model will optimally
generate geometry driven by the text input. Furthermore,
we initialize ellipsoids within specified regions, offering a
smooth prior that enhances the stability of the geometric
modeling.
Geometry Learning and Fusion. We adopt DMTet as
our 3D scene representation optimized by the prior knowl-
edge distilled from pre-train T2I model. More specifically,
keeping the base shape Ψb(vi) frozen, we parameterize the
SDF values (inner is positive) of editable parts using MLP
Ψe(vi) for each vertex vi within the tetrahedral grid. Sub-
sequently, a soft geometry union [26] is performed between
Ψb(vi) and Ψe(vi), resulting in Ψu(vi) for a smooth junc-
tion:

Ψu(vi) = max {Ψb(vi),Ψe(vi)}+
0.1× h2

k
, (3)

where h = max {(k − |Ψb(vi)−Ψe(vi)|), 0} , (4)

where k determines the extent of the soft merge and is set
to 0.15 by default. After geometry fusion, a differentiable
MT layer transforms Ψu(vi) and the vertex offset ∆vi into
a triangular surface mesh M. Finally, the rendered normal
map n and the object mask o extracted from the meshM
are fed into pre-trained T2I models with SDS loss to update
Ψe:

∇ΨeLSDS(ϕ, ñ) = Et,ϵ

[
w(t)(ϵ̂ϕ(z

ñ
t ; y, t)− ϵ)

∂ñ

∂Ψ

∂zñ

∂ñ

]
,

(5)
where ϕ parameterized pre-train T2I model, ñ represents
the augmentation of n concatenated with o, zñ is latent en-
coding of ñ. We observed using normal map n promotes the
expression of geometric details and training stability [3].
This improvement from n is partly attributed to disentan-
gling the geometry from the intertwinement of texture, and
its sufficient expressiveness to depict complex geometric
details.
Geometric Concentration. One of the main criteria for a
proficient 3D editing algorithm is its ability to retain the ge-
ometry and color of the base object throughout the editing
process. However, the aforementioned pipeline cannot en-
sure locality in editing. We have observed global changes
and a loss of characteristics from the base shape (Fig. 7). To
counteract it, we introduce distance-aware geometric focal
loss LGF . During each iteration, a certain number of points
pi ∈ R3 are sampled outside the user-specified focal re-
gion Ω′, with their SDF values Ψe(pi) and their distances
di to the focal region Ω′. The objective of LGF is punishing



the editable shape when it produces topological structures
(Ψe(pi) > 0) outside Ω′. Moreover, the closer pi is to the
target region, the less the penalty, for this distance-aware
setting permits geometry to overrun beyond the rough focal
region slightly. The geometric focal loss is defined as:

LGF = Epi /∈Ω′

[
(1− e

−d2i
σ1 ) · tanh(max {Ψe(pi) + ξ, 0}

σ2
)

]
,

(6)
where σ1 = 0.05 and σ2 = 0.01 control how sensitive
the loss is, i.e., lower σ values tighten the constraint on the
optimization such that only the editable region is modified
strictly. The hyperparameter ξ is a small positive thresh-
old to prevent topological structures from minor positive
SDF values. For computational efficiency, we sample query
points on the tetrahedral vertex vi, and pre-compute their
distance di to Ω′ before the geometry generation process
begins.
Collision Avoidance. Another essential criterion is to re-
spect the purity of the editing results, i.e., the editable shape
should not overlap with the base shape, as they are semanti-
cally independent and distinct parts. We enforce it by penal-
izing the query points pi that reside both within the learn-
able shape and the base shape with the collision avoidance
loss:

LCA = Epi [max {Ψb(pi), 0} ·max {Ψe(pi), 0}] . (7)

Intuitively, this reduces the likelihood of overlap between
the editable shape and the original mesh, resulting in cleaner
editing outcomes. For computational efficiency, we sample
query points at vi as the same as geometric focal Loss.

3.3. Appearance Editing

Dual-path Physically Based Rendering. After the opti-
mization of the geometry network, the resultant mesh M
is obtained from the soft fusion and MT layer. Following
Physically Based Rendering (PBR) material model, we use
hash-grid-based texture neural fields Γ for M to produce
the diffuse term kd, the roughness and metallic term krm,
and the normal term kn as (kd, krm, kn) = Γ(pi). In or-
der to retain the appearance of the base shape untouched,
a naive and straightforward idea would be to initialize the
learnable texture neural fields Γe with the base texture fields
Γb derived from the base shape reconstruction, then the en-
tire shape’s appearance is modeled by Γe exclusively. How-
ever, this simple pipeline has two shortcomings: 1) As the
number of iterations increases, it suffers from sub-optimal
convergence and loss of the original material (in Fig. 7). In
essence, the texture of the base shape isn’t adequately re-
tained due to the overly strong knowledge supervision from
T2I models. 2) Although learnable parts have independent

semantics, such as “the wings”, their texture cannot be ex-
tracted alone. This impediment makes the reuse and driving
of materials for these editable parts unfeasible.

To tackle this issue, we re-design the rendering pipeline
in a dual-path manner. Central to this redesign is a Pixel-
wise Discriminative Mask (PDM) generated in the raster-
ization process, which discerns whether each pixel comes
from the face of the base mesh or the editable mesh. As de-
picted in Fig 3, throughout the dual-path rendering process,
both parts are rendered based on their own neural texture
fields, and the outcomes are then blended by PDM, which is
called texture composition, culminating in a unified merged
view. Similarly, the merged view is inputted into the T2I
model for texture optimization with SDS loss. By truncat-
ing the gradient towards Γb, the texture of the base shape
is precisely preserved, while the editable shape has its in-
dependent trainable texture Γe. As is clear, dual-path ren-
dering balances the preservation of the base shape structure
with flexible part-wise control, as well as the seamless inte-
gration of the base part and editable part.
Style Consistency. In some instances, local changes are
anticipated to be realized seamlessly, as well as in a harmo-
niously coordinated style, as shown in Fig. 7. This problem
is modeled as follows: let Me ∈ R3 be a closed subspace
to represent the editable parts with boundary ∂Me. Let f∗

be a known mapping function defined over R3 minus the
interior of Me to be preserved, and let f be the unknown
function defined over the interior of Me. A classical in-
terpolant f is defined as the solution of the minimization
problem in image inpainting [24]:

min
f

∫∫∫
Me

|∇f |2 with f |∂Me = f∗|∂Me . (8)

We propose two consistency regularization items to imi-
tate the interpolant process in a simple manner:

Lg = Epi∈Me

[
∥Γe(pi)− Γe(pi + δ)∥2

]
, (9)

Lb = Epi∈∂Me

[
∥Γe(pi)− Γb(pi)∥2

]
, (10)

LSC = Lg + λLb. (11)

Intuitively, the Lb ensures that the editable texture Γe is con-
sistent with the base texture Γb in the adjoining areas ∂Me

as Dirichlet boundary condition, while the Lg extends the
consistent style throughout the whole learnable part Γe with
gradient constrain on small noise δ. As shown in Fig. 7, the
LSC achieves local changes in a seamless manner.

4. Experiments
4.1. Experimental Setups

Implementation Details. We use the Stable Diffusion im-
plementation by HuggingFace Diffusers for SDS, and adopt



Fantasia3D* Vox-E-Global Vox-E OursBase shape
“a human skull 

wearing a pair of 

dark glasses”

Prompts

“Flash Gordon wear the 

red velvet cape with a 

golden trim over his 

shoulder, highly detailed”

“a labrador wears a 

crown with sapphires”

“a deer standing 

on two separate 

wooden skateboards”

Figure 4. Visual comparison. Our approach synthesizes high-quality edits while preserving the base mesh perfectly.

DMTet to learn geometry and texture separately with NVD-
iffRast as a differentiable renderer. FocalDreamer usually
takes less than 30 minutes (3000 steps) for geometry and
20 minutes (2000 steps) for texture to converge on 4 Nvidia
RTX 3090 GPUs, where we use AdamW optimizer with the
respective learning rates of 1×10−3 and 1×10−2. UV edge
padding techniques are utilized to remove the seams in the
texture maps. More details are provided in the appendix.

Synthetic Object Dataset. We assemble the dataset with
15 high-quality meshes found on the internet. We paired
each object in our dataset with a detailed edit prompt to
showcase our approach’s ability to perform expressive,
precise, and diverse edits which are absent in other ap-
proaches.

Evaluation Criteria. Following Vox-E, we report auxil-
iary quantitative metrics on our dataset: (1) CLIP Similarity
(CLIPsim) measures the alignment of the performed 3D ed-
its with the text descriptions, and (2) CLIP Direction Sim-
ilarity (CLIPdir) evaluates the edits with the editing direc-
tions from the input to edit results, by measuring the di-
rectional CLIP similarity between changes of text and 3D
shapes, first introduced by StyleGAN-NADA [8].

Baselines. We compare FocalDreamer with three baselines.
(1) Fantasia3D*: as claimed in Fantasia3D [3], it is able to
generate shapes initialized with a low-quality customized
3D mesh. In order to additionally endow it with preserva-
tion of texture from base shape, the texture field Γ(pi) is
supervised by base texture with reconstruction loss on the
base mesh surface, as one of the baselines. (2) Vox-E [29]:
to show our superior editing within desired regions, SOTA
editing work Vox-E is also compared. To the best of our
knowledge, Vox-E is the only open-source method that di-
rectly performs text-guided localized edits for 3D objects.
(3) Vox-E-Global: Vox-E also supports global editing to bet-
ter align with the prompts without constraining from base
shape. More details are provided in the appendix.

Figure 5. Comparison with SOTA image editing methods. The
gray areas in input images indicate the inpainting region specifi-
cally added for ControlNet. We observed that 2D editing methods
exhibit view-inconsistent, and their editing quality varies notably
depending on the viewpoint.

Method CLIPsim ↑ CLIPdir ↑

Fantasia3D* 0.284 0.0180
Vox-E-Global 0.299 0.0204
Vox-E 0.293 0.0178
FocalDreamer (ours) 0.329 0.0519

Table 1. Quantitative evaluation results across 15 scenes.

4.2. Qualitative Results

The qualitative comparison with 3D editing baselines is
shown in Fig. 4 over our dataset. As illustrated in the fig-
ure, Fantasia3D* results in an appearance vastly different
from the base mesh, even with the texture reconstruction
loss, because the whole shape is re-optimized according to
prompts. While Vox-E-Global occasionally produces edits
that align with prompts, it suffers from subpar editing qual-
ity and noticeable outliers. Vox-E demonstrates a limited



Figure 6. Boxplot illustration of user study. FocalDreamer demon-
strates better performance (high means) and stability across scenes
(narrow interquartile range).

capacity to filter out undesired changes and noise based on
Vox-E-Global, since it heavily relies on a keyword, such as
cape or glasses. Vox-E sometimes misidentifies the focal
regions, i.e., placing glasses on the top of the skull. In con-
trast to them, our editings align perfectly with the prompts
while faithfully preserving the details of base mesh, achiev-
ing precise and meaningful changes to both geometry and
texture.
2D Image Editing Comparisons. We demonstrate that 2D
image editing methods cannot effectively handle 3D ob-
ject editing tasks. This is primarily because 2D editing on
rendered images does not yield satisfactory view-consistent
results. We sample renderings from three different view-
points and apply SOTA image editing methods, namely In-
struct Pix2Pix (IP2P) [2] and ControlNet-inpainting (Con-
trolNet) [37]. We input the same prompts in Fig. 2 for
FocalDreamer and ControlNet, and the modified prompts
in the form of “put xxx on xxx” for IP2P. As depicted in
Fig. 5, the quality of editing by 2D methods drops signifi-
cantly from less canonical views (e.g., the turtle’s left view),
and they severely lack view-consistency.

4.3. Quantitative Results

We perform a quantitative evaluation in Tab. 1 on our
dataset. To perform a fair comparison, all metrics are calcu-
lated with renderings from the same 100 views across dif-
ferent methods. As illustrated in the table, FocalDreamer
achieves noticeably higher CLIPdir. This is attributed to
its capability to avoid unnecessary changes and accurately
execute the desired editing direction, primarily due to the
geometric concentration. Additionally, our editing fidelity
(CLIPsim) stands out as the best, stemming from the en-
hanced part-wise details brought by the separable frame-
work and decoupled learning.
User Study. While CLIP mainly evaluates the matching
degree of rendered views and text prompts, it fails to as-
sess the extent to which the base shape is properly pre-
served. We conduct user studies with 65 participants to
evaluate different methods based on user preferences across

LGF LCA LSC Dual-path Render CLIPsim CLIPdir

✓ ✓ ✗ ✓ 0.312* 0.0402*

✓ ✓ ✓ ✓ 0.319* 0.0495*

✗ ✓ ✓ ✓ 0.316 0.0433
✓ ✗ ✓ ✓ 0.329 0.0517
✓ ✓ ✓ ✗ 0.313 0.0401

✓ ✓ ✓ ✓ 0.329 0.0519

Table 2. Quantitative ablation study. Since not all scenes require
style consistency, we report the metrics of editings require LSC

with ∗. The performance of FocalDreamer would noticeably dete-
riorate without the above components.

15 scenes. We ask the participants to give a preference
score (range from 1 ∼ 10) in terms of prompt relevance
and base shape preservation for 5 random views per scene
from anonymized methods’ generation. As shown in Fig. 6,
we report the distribution of the scores, including the me-
dians, means, quartiles and outliers. We find that Focal-
Dreamer is significantly preferred over all baselines in terms
of source preservation (i.e., mean = 9.14) and prompt rel-
evance (i.e., mean = 8.40). The narrow interquartile range
in our method also demonstrates a more stable editing effect
across various scenes.

4.4. Ablation Study

We conduct the ablation study both qualitatively and
quantitatively. In particular, by setting LGF , LCA and LSC

to zero respectively, we investigated the effects of our pro-
posed Geometric Concentration, Collision Avoidance, and
Style Consistency strategies. In order to validate the dual-
path rendering, we employ the naive idea of single render-
ing outlined in Section 3.3 for ablation. Specifically, it in-
volves rendering the entire shape with a learnable texture
Γe, which is initialized with the base texture Γb.

As illustrated in Fig. 7 and Tab. 2, LGF significantly con-
strains geometric alterations outside the focal region, result-
ing in localized edits. LCA effectively prevents undesirable
geometric overlap within the base mesh, especially at the
junction like the root of wings and capes. Since LCA pre-
dominantly affects the purity of the editable part and has
minimal impact on the overall appearance, its quantitative
metrics closely align with the full model. In the absence
of dual-path rendering, the base mesh texture experiences
unintended alterations due to the update of the whole tex-
ture network during appearance learning. Moreover, edit-
ing with LSC exhibits a harmonious overall style and na-
ture transition in certain instances, but it is not universally
required (e.g., a butterfly over a tree stump). In Tab. 2, we
use ∗ to denote scenes that require LSC for a fair compari-
son.
Progressive Editing. Our method can be used as a sequen-



Base shape
w/o Geometric Concentration

resultant shape editable part

“Flash Gordon wear the red velvet 

cape with a golden trim over his 

shoulder, highly detailed”

“a highly detailed pegasus

with two wings”

Full Model

resultant shape editable part

w/o Style Consistency

resultant shape editable part

w/o Collision Avoidance

resultant shape editable part

w/o Dual-path Rendering

resultant shape editable part

Figure 7. Ablation study. We visually illustrate the effect of each technique we propose. Please refer to Section 4.4 for details.

Figure 8. Geometry union sensitivity. The smoothness of the junc-
tion varies with different k in Eq. 3 and 4.

“a highly 

detailed pegasus

with two wings”

“… with

one golden

horn”

Figure 9. Progressive editing. The horse is first edited by adding
two wings, then a horn is added in a subsequent edit.

tial editor for users’ requirements, and progressively edits
base mesh. In Fig. 9, we exhibit a two-step editing by first
generating two wings on horse, followed by adding a horn.
Geometry Union Sensitivity. We also demonstrate the
smoothness of the junction between the editable part and
base mesh with various k (Eq. 3 and 4) in Fig. 8. It is ev-
ident that larger k leads to a more natural but pronounced
transition region. We set k = 0.15 for a moderate transi-
tion.

5. Conclusion
In this paper, we present FocalDreamer, a text-driven

framework that supports separable, precise, and consistent
local editing for 3D objects. Technically, we equipped

FocalDreamer with geometry union and dual-path render-
ing to assemble independent 3D parts, facilitating instance
reuse and part-wise control. Geometric focal loss and style
consistency regularization are proposed to encourage fo-
cal fusion and congruent overall appearance. Comprehen-
sive experiments and detailed ablation studies have demon-
strated our approach possesses superior local editing power
through a well-conceived framework design. We hope that
FocalDreamer will help pave the way for expressive, local-
ized 3D content editing for casual artists, bringing us closer
to the goal of democratizing 3D content creation for all.
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